Estimating carbon emissions from African wildfires

نویسندگان

  • V. Lehsten
  • K. Tansey
  • H. Balzter
چکیده

We developed a technique for studying seasonal and interannual variation in pyrogenic carbon emissions from Africa using a modelling approach that scales burned area estimates from L3JRC, a map recently generated from remote sensing of burn scars instead of active fires. Carbon fluxes were calculated by the novel fire model SPITFIRE embedded within the dynamic vegetation model framework LPJGUESS, using daily climate input. For the time period from 2001 to 2005 an average area of 195.5±24×104 km2 was burned annually, releasing an average of 723±70 Tg C to the atmosphere; these estimates for the biomass burned are within the range of previously published estimates. Despite the fact that the majority of wildfires are ignited by humans, strong relationships between climatic conditions (particularly precipitation), net primary productivity and overall biomass burnt emerged. Our investigation of the relationships between burnt area and carbon emissions and their potential drivers available litter and precipitation revealed uni-modal responses to annual precipitation, with a maximum around 1000 mm for burned area and emissions, or 1200 mm for litter availability. Similar response patterns identified in savannahs worldwide point to precipitation as a chief determinant for short-term variation in fire regime. A considerable variability that cannot be explained by fire-precipitation relationships alone indicates the existence of additional factors that must be taken into account. Correspondence to: V. Lehsten ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin

BACKGROUND Wildfires are an increasingly important component of the forces that drive the global carbon (C) cycle and climate change as progressive warming is expected in boreal areas. This study estimated C emissions from the wildfires across the Alaskan Yukon River Basin in 2004. We spatially related the firescars to land cover types and defined the C fractions of aboveground biomass and the ...

متن کامل

Volatile organic emissions from the distillation and pyrolysis of vegetation

Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa) were heated from 30 to 300C and volatile organic compound (VOC) emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller ...

متن کامل

Modelling Carbon Emissions in Calluna vulgaris–Dominated Ecosystems when Prescribed Burning and Wildfires Interact

A present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we modeled the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north-south gradient in...

متن کامل

Effects of fires on carbon cycling in North American boreal peatlands

Boreal peatlands occupy about 1.14 x 106 km2 in North America. Fires can spread into peatlands, burning the biomass, and if moisture conditions permit, burning into the surface peat. Charred layers in peat sections reveal that historically bogs in the subhumid continental regions and permafrost peatlands of the subarctic regions have been the most susceptible to fires. Fire return periods were ...

متن کامل

Estimating greenhouse gas emissions using emission factors from the Sugarcane Development Company, Ahvaz, Iran

Background: Greenhouse gas (GHG) emissions are increasing worldwide. They have harmful effects on human health, animals, and plants and play a major role in global warming and acid rain. Methods: This research investigated carbon dioxide (CO2) and CH4 emissions obtained from different parts of the Hakim Farabi, Dobal Khazaei, and Ramin factories which produce ethanol and yeast. Seasonal rates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009